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Abstract

We compute isotope independent first and second order corrections to the Born-Oppenheinler

approximation for water and use them to predict isotopic shifts. For the diagonal correction, we

use ieMRCI wavefunctions and derivatives with respect to inass dependent internal coordinates

to generate the mass independent correction functions. For the non-adiabatic correction, we use

scaled SCF/CIS wave fimctions and a generalization of the Handy method to obtain mass indepen-

dent correction functions. We find that including tim non-adiabatic correction gives significantly

improved results compared to just including the diagonal correcti,m when the Born-Ot_penheimer

potential energy surface is optimized for H2160. The agreement with experimental results for deu-

terium and tritium containing isotopes is nearly as good as our best empirical correction, however

the present correction is expected to be more reliable for higher, uncharacterized, levels.



I. INTRODUCTION

Starting wit.h tile work of Polyansky et al.,[i I empirical potential energy surfaces of water

had reached a level of accuracy which enabled one to detect the need for mass dependent

corrections arising from the breakdown of the Born-Oppenhein_er api)roxinmtion. The first

attempt to predict the mass corrections was carried out by Zobov cl al.[2], who calculated

the diagonal (first order) correction at the SCF level. They used this with an ab initio PES

and found some improvement, although the errors were still too large to be unambiguous.

Subsequently we[3] determined an empirical PES which reproduced H2 1_O energy levels

very well, but when we applied the Zobov ctal. correction, w!_ f(mnd that it did not predict

the necessary isotopic shifts. Thus we determined an empirical mass dependent correction

to our PES using data from HDO and D20, and this greatly improved the results for all

the other isotopomers, however there remained discrepancies for the tritium isotopes, and

because of the paucity of data for D20, this correction is only reliable fin low lying lev,_Is.[3]

It would be most advantageous to the analysis and assigt:ment of experimental spectra

if reliable ab initio predictions of the mass dependent corre(tions is made available. This

is because to a large extent, all of the inforination about tlm Born-Oppenheimer PES is

contained in the results of a single isotopomer. Experimentally, it is much simpler to deal

with a single isotopomer. For example, one can obtain ess_mtially pure samples of H20

and just obtain the spectrum of that species, ttowever, it is not possible to obtain a pure

sample of HDO, fox collisions generate H20 and D20 as well, and so one has to deal with

interfering H20 and D20 lines on top of the more complex spectrum that HDO has due

to its lower symmetry. Molecules such as 03 give rise to even more complicated inixtures

of isotopomers. Analyzing and reliably assigning experimel.tal spectra is a great deal of

work. If theoretitions could reliably predict isotopic Shifts, th_n that would be a nmeh more

efficient means of generating spectral data.

We compute the mass dependent corrections to the Born-Oppenheimer approximation

using the second order perturbation theory result of Bunker and Moss[4] with ab initio wave-

functions to compute the required matrix elements.j5] The first order correction is a mass

dependent correction to the PES, sometimes called the Born-Oppenheimer diagonal correc-

tion (BODC). The second order correction leads primarily t(, a mass dependent correction

to the nuclear kinetic energy operator. This is usually called the non-adiabatic correction.



We haverccent.lydevelopedtools to computethesecorrectionsand applied tlmm to H20.[5]

There we found that the SCF approximation used by Zobov to compute the first order

correction is not reliable. In the presentwork we report pr_dictions of isotopic shifts for

deuteriumand tritium containingisotopesusinga newlyoptimized Born-OppenheimerPES

including non-adiabatic effectsand a moreaccuratefirst,order correction. We a.lso derive a

generalization of the Handy method for the diagonal correction to compute non-adiabatic

correction functions from mass independent cartesian derivative matrix elements.

II. OPTIMIZING THE PES

In our previous work,[3] we obtained the empirical PES I _'_'_v as

(.basis A Irbasr_ 2_.__,"r,:stI'emp = c5Z v 5Z _[_ cC°re /L_I7 c°rc _[_ _ ,, _[_ , (1)

with cTM, c_°'_, c_'_, and the 18 parameters in AV r_t deteImined by' a least squares fit

to 5493 ro-vibrational transitions with ,1 _< 5. This calculation did not include any non-

adiabatic effects. In the kinetic energy operator, we usc'd the imclear masses. For the first

step in the present work we re-optimize c '_z, c_°_, C basis, and the 18 parameters in AI ,'_t

including non-adiabatic effects. This produces the PES we call V ''_''_v.

The non-adiabatic corrections were obtained as an extension of our previous work.[5]

Since the functional form used for the corrections does not extrapolate properly and in the

present work we are considering higher energies, we extended cur grid in R1 and/_2 to 0.775-

1.425 .& in steps of 0.05 :_, and _) to 50 - 170 degrees in steps of 10 degrees, and the energy

cut off was 20,000 CII1-1 . \re fit these (693 unique) 1292 poir:ts to the same polynomial as

in our previous work. In these calculations, the ground electronic state is treated using the

SCF method, the excited states by the singles CI method, and the results were scaled by

1.1. This scale factor was obtained by matching the computed and experimental rotational

g factors.J5] We used the aug-cc-p\'TZ basis.[6]

In our opt imizations of the parameters in our PES, we use different experimental data

than we used previously. In previous work we fit ro-vibrational transition energies. One

problem with this is since to-vibrational transition energies are differences in energy levels, it

is hard to judge the amount of unique data one is fitting. Furth,:_rmore, there is the possibility

of inconsistencies in ro-vibrational energies that make up the transition energies. So in the



present work, we use a different strategy. \Ve start by eomt)iling a list of ro-vibrational

energies. Thesewere determined as follows. \\:e took tile transition frequencies given in

HITRAN 96,[7] and augmented this with the more recent data from the literature.[8 10]

We then iteratively solved for to-vibrational energies with respect to the zero point energy.

This gave many estimates of the ro-vibrationat energies, an:l we only retained consistent

energies, which were defined as energies with at least 2 determinations, and a root-mean-

square deviation from the average of the determinations less than 0.001 cm -1. This resulted

in a total of 1688 energy levels having d in the range 0 - 8. In future work, we would use

the compilation of Tennyson et al.[11] Now one desirable feature of our previous fit was that

the errors had very weak dependence on J. To retain this feature, we weight rotational

energies more than vibrational energies. We achieve this by organizing tile ro-vibrational

levels into groups which all have the same vibrational quantum number assignment. Then

in each group, we subtracted the d = 0 energy from the higher d energies. If the .] = 0

energy has not been determined, then the lowest d level that has been determined is used

instead. In the fit then, there is a relatively small numt:)er of "purely" vibrational energies

and a much large number of rotational energies. We fit these with equal weights.

For the present work we use a subset of the above data. This is to reduce the cost

of the calculations and because we are not using hyperspherical coordinates.[3] We find

our algorithm has difficulty converging highly excited stat(s when we use rl and r2 as

coordinates.J5] Thus we consider only levels which correspond to roots 1-30 in a given ,IPS

block. This results in a total of 1060 levels, of which 19 are "purely" vibrational levels and

1041 are rotational levels. We made our best attempt to ensure the proper matching of

experimental and theoretical levels, but inadvertently some miss-assignments were made.

\\:e attempted to automatically detect these during tile least squares process by computing

the average absolute deviation from the average of the difl>rence between the observed

and calculated levels. "v\\_ multiplied this by ten, and used this as a cut-off criterian to

greatly diminish the weights for levels which had greater ditference between the observed

and calculated levels. In our final fit, 33 points were deleted 1)y this rule, and the weighted

root-mean-square (rms) error of the fit was 0.054 cm 1. In this fit, we used the PES I "emp

and the kinetic energy operator including non-adiabatic effects to generate the waveflmctions

used as basis functions in the least squares fit.

In the course of this work, we also carried out optimizations not including non-adiabatic



efl_ct.sfl_r comparison. \_%found only slight changesto our )reviousPES,[3]and that the

errorsproduced with and without non-adiabatic correctionswereessentiallytile same.The

only differenceswerein the valuesof the paran-wters.Of great interest was that when we

includednon-adiabaticeffects, the optimum value of the par_,r:mters cb°_i_ and cc°'* came out

to be essentially unity, and so in the final fit, we constrained lhem to be unity. It should be

noted that we did not include the BODC or relativistic corre.:tions[121 to the PES in these

optimizations. Initial trials including these corrections yield,_d essentially zero coefficients

for the corrections. However, those calculations were carried out using the Zobov et al.[2]

BODC, so if tile calculations were repeated with the accurate BODC, this might not happen.

Ill. BODC

In Ilef. 5, we reported calculations of the BODC of water using both CASSCF and SCF

wavefunctions. For bending levels, the CASSCF and SCF results were very similar, but

for the stretching levels, there were big differences. In the present work we have extended

our capabilities and report the BODC computed at the icMRCI level, which should provide

very accurate results. See 1Ref. 5 for the equations involved in the calculations. These

calculations are carried out with a modified version of MOLPRO2000.1.[13] Two additional

modifications were required to carry out these calculations. First of all, we had to extend the

diabatic orbital scheme to perform rotations among the virtual orbitals. Secondly, we had to

evaluate two-particle expectation values using the icMRCI wa._'eflmction. This was achieved

by" modifying the CI code to perform a CI iteration using the converged waveflmction, but

using different one and two-electron integrals. This is complicated by the fact that the

two-electron repulsion integrals are symmetric with respect to interchanging the indices

for the basis flmctions of one electron, while for the two-particle operators we require, the

integrals are skew symmetric with respect to interchanging the indices. Nonetheless we have

successflflly made these changes.

When computing the BODC, one has three choices. One can use the Handy method.

[14] which for a triatomic requires nine derivatives, six of which can be evaluated using

C_ symmetry, and three which must be run in C1 symmetry. Alternatively, one can carry

out calculations using internal coordinates that depend on the isotopomer. For example,

for Radau coordinates, this requires three derivatives and all tile calculations can be run



using Cs symmetry.J5] Then the cost per point is less, but. one has to perform additional

calculations for each isotopomer of interest. Since in the present work we arc interested in a

large number of isotopomers, this would seem to favor the Handy method. I]owever, avoiding

the Ct calculations can be a big advantage. _\_ therefore seek economies bv combining the

methods. This is done as follows. We know that for isotol)omer ABC, the Handy method

gives the BODC as

AV - 1 FA + _[_ + _Fc ' (2)
$ll A TI) B 7IZC

where 7/_A is the mass of nuclei A, and FA is the correction flmction of atom A, etc. If

we knew the BODC for three linearly independent isotopomers, we can solve for the __,

where ct is A,/3, or C. Specifically, we will carry out calcuati(ms of the BODC using Radau

coordinates for H2_SO, H2_SO, and HD160. For the first two isotopomers, we only carry

out calculations with the first HO bond length greater than the second, while for the last

isotopomer, we do not make this restriction. We then solve for the F_ at each geometry,

and fit them to the functional form

Fc_ _-= exp{-/_[(Fl-7*e) 27L(r2-re)2]} _ c c_ _ __ (3)
ijk

and then use Eq.2 to evaluate the BODC for each isotopome::. We used the same values of

/3, r'_, and 0_ as in our previous work,J3] and included all term_ with i + j + k < 6. It should

be noted that /3 was erronously described[3] as having the value 2 ao-2. It actually has the

value 2 _&-2 The rms errors for the fits to F_ were 1.8 x 10 .5 au and 7.7 x 10 .5 au, resulting

in rms errors in AV of less than 0.003 cm-!. The linear coefficients c_k were determined by

equally weighted least squares fits. Due to numerical errors, the fits did not quite have the

desired symn_etry, so the coefficients were symmetrized after the fitting.

IV. GENERALIZING THE HANDY METHOD

In this section we generalize the Handy method for the BC, DC to enable one to compute

the non-adiabatic correction. We start first with the kinetic energy operator for the nuclei

in an arbitrary space fixed fiame:

fi2 1 0 2
T



where ffz_ is the mass of nuclei (,., and i runs over cartesian coInponents. \Vc can re-write

this in the form

= V _ ,._ ox,o' (_')

where ]- means complex conjugate acting to the left. Now we can compute the non-adiabatic

correction functions as reported previously,[5] using the space fixed cartesians of Eq. 4. In

this case one obtains the correction

ic_jcg ia

(6)

where

,oj_ - _i(_ o,_by, (7)
n#0

n¢O

b? h2 c%,:;'0- < "<,1 >, (lO)

2 ,
h 2 1 0V:0

b;_-- --g < "w,_l_-. m,_ _ >, (11)

_40,_= __o - u,2, (12)

alld

t/' ol,t,o
$'_ = A_,]_, mOXi_, (13)

m

where II._ is the Born-Oppenheimer energy of electronic state n, and _,_ is the Born-

Oppenheimer electronic wavefunction for electronic state ft. When computing the deriva-

tives, the origin used for the electronic wavefunctions is fixed. It should be noted that in

general, the C[_._,, C2 ), and C (°) are dependent on the geon:etry of the nuclei.

It will be convenient to express the coefficients in Eq.6 !n terms of mass independent

(2)
quantities. Now Tltallla, Ciajn, is independent of mass, so that part is straightforward. For

the other quantities, we need a partial decoml)osition, so that

c_,__ ,,,ol_ 1__c!,>,,,_,,,,_,, (14)
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and

aa_ gnu 7N, a,

The transformation from atomic cartesians to internal c:)ordinat.es with total angular

momentum eigenfunctions takes place in several steps. X'__' now consider each step in turn.

A. l_Iass factor transformation

We next introduce the coordinate transformation

X = xM, (16)

where x is the matrix of cartesian internal coordinates, and M is a matrix of mass factors.J15

17] We assume that the final vector is for the center of mass., and M is invertible. Let IVI

denote the inverse of M. Then since

where fl indexes the internal coordinates, tim kinetic energy ,q)erat.or becomes

wit h

It is easy to show that

1 _ _ _-TGo11__i,,.a," (19)
Itflfl ' a 712a

z,aj,_' °q'ra/J' ifl

with

and

_(2) v_ £, ,-,(2} £I, ,
ub.:3' = Z_, "_,_m-_i{_j_'_ _{__, (21)

OgO_ I

C}]) E "(') (22)2_a,3u'ia t

ol

C'° = C°. (23)



B. Decouple Center of Mass

\Ve next perforn_ a. transforInation which takes the electrmfic coordinates and the coordi-

nates for tile nuclear center of mass and fi)rms new coordinates consisting of the electronic

coordinates with their origin the nuclear center of mass, an(!. the coordinates for the total

center of mass.[5] This transformation zeros the coupling between the center of mass and

all other coordinates, and requires the inclusion of the mass polarization term[5] when con>

puting matrix elements. Nevertheless, tile immerical vahLes of the matrix eleInent.s and the

remaining correction functions are unchanged.

C. Euler internal

We next transform flom the space fixed nuclear cartesians to body' fixed coordinates

defined by

x = ATx _°, (24)

with A a rotation matrix[17] parameterized by the Euler angles ct/:_': the superscript T

denotes transpose_ and x _° the z embedding of Sutcliffe and Tennyson,liB l parameterized

by" the lengths r_ and r2, tile angle X, and the embedding patameter a. The matrix A can

be easily determined by the relation

A = V(x_°)V(x) _', (2,5)

where V is a 3 × 3 orthogonal matrix constructed from the first two vectors of its argument.

We take the first cohmm of V to be the unit vector parallel to the first vector of its argument,

the third cohnnn to be the unit vector obtained by Schmidt orthogonalizing the first, vector

from the second, and the second column the cross product of the other two colunms.

Then we introduce[19]

0

8XiO -- _ Aji(ce' ,d, 7) _ gaal01. (26)
j z

with Ot and gkzt given in Table I. The coordinates l consist of the radial coordinates th and

r'._: the bending angle X, and the nuclear angular momentum operators R_. In the table_ R{

is tile { component in tile nuclear body-fixed frame of reDrenee of the total nuclear angular

9



ntomentum,with its sign rev(,rsedt.osat.is_'normal communtation relatioils. Substituting

Eq. 26 into Eq. 18ea.silyyields the desiredkinetic energyop',_'rator:

r_2_ O;c.,0., (27)
T=_-.,

with

1

_9'k t ,J3

\re must also renlenll)('r to inchl(le the VOhlllte elenleilt o]:)t.ane(l fronl the ,]aeobian deter-

minant when computing matrix elements over vibrational-rotational functions. This volume

element is not. to be acted on by any of tile Ol when T is writ ten as in Eq. 27. We Call also

write Eq. 27 in tile more conventional form

T h2 - " "
= _ F_,C.,OlO..

II'

As before, we obtain tile non-adiabatic correction

with

(29)

and

,6t,_(2)7_ [,.St,_(1), - (_) .. ] _(o)_._r=Z,,,_-,,,,-,,+EL--.,-., ÷c, o, -F_ , (30)
ll' l

c') _ g_,F_ _' "_) _',°, (31)=- , _ tki_ii_j/3, .*ak jYk 3'l',

kk_3 ' zj

_I1)=Z g_,Z-4,,C'_2, (32)

_(o) = (;,(o). (33)

D. Rotational invariance

Finally, we fix the electronic positions with respect to the nuclear body-fixed axis. This

results in tile elimination of the nuclear angular momentum operator via tile relation

_ = j_ + L{, (34)

where ( specifies the cartesian component in the nuclear body-fixed frame of reference, t_

is the nuclear angular inonlentulll with sign reversed to satisfy normal comnmntat.ion rela-

t.ions, J is tile total angular momentum with sign reversed to satisfy normal COln'muntation

10



relations, and L is the el(:ctronic angular momentum. Since the electronic wavefunction

rotates with the molecuh;, ,l_ will have no effect on tile elect:onic waveflmctions, thus ma-

trix elements which we,re computed as derivatives with respect to the Euler angles are now

computed as matrix elements of L_, but the numerical values are unchanged.

E. Wavefunction Faetorization

So far we have presented resuhs where the radial coordinates have volume elements r_dri.

It is convenient to introduce the factorization _ = q),J('qr.2) and solve for _I_,jrather than

for _. This changes some of the coeflicients in Eq. 30. Specifically _7(0) is replaced with

-- -- -- @_11 /7"_ Jr- _'_)/F_ -_- ZC, 12 /F1F 2 (3_)

,:,( U
and then c,_ is replaced by

_ll) ,_(2)/ _,_(2)/Lll /rt '-'12 /r2. (36)

F. Summary

_(2) (1) C(0)o, Cma, , using the appropriate modificationsIll SUIlllIlarv, one COlIlpUt, es I?2ct'Hlct, Veic,jc_, , ooz'

of Eqs. 7,8,9 on a grid. Then for a particular isotope, one forms C! 2). C}_ ) and C (°)
Z_30l ,

(Eq. 14,15), then applies the mass transformation of Eqs. 21 and 22, then the rotation and

coordinate transformation of Eqs. 31 and 32, and finally the factorization transformation

(2)
of Eqs. 35 and 36. One could attempt to fit mom_,Ci_jo, etc directly, but since these

quantities depend on the choice of origin, it is not clear what functional form to use. For

this part of the calculation, we fit the --u , and calculated at 366 geometries with

165 parameters to a flmctional form like the one described pieviously.[5]

V. RESULTS

Now that we have tile icMRCI BODC, we can test how well the BODC computed using

the CASSCF wavefunction[5] is converged. In Table II we give our results obtained using

the SCF BODC, the CASSCF BODC, and our new icMFfCI BODC. All calculations used

the cc-pVTZ basis.[20] These calculations use the un-optimized PES 1:5z as in Ref.5. To

be consistent with our previous work,[5] we label the vibrational levels with local mode

11



quantum numbers. \\Teseethat weobl_ainquite similar results fl()m all methodsfor bending

overtones,but much larger differencesfor stretching overtoJ_es.The corrections obtained

from the CASSCFmethod areoverestimatesfor the stretches,for the icMRCI resultsalways

movetoward the SCF results. Nonetheless,the SCF resultsarenot reliable for stretches.

\Ve now turn to our results using the new PES. In Table HI, we give the errors for low

lying levels of the various isotopomers from three different calculations: tho results labeled

I,:''_'_ are taken from }tef.[a] and are obtained using the empirical mass dependent correction,

the results labeled BODC use the PES 1,'_''4' from Ref.[3] and the icMR, CI BODC from the

I)resent work, and finally the results labeled Noad use the newly optimized PES I :'_''*' and

include the icMRCI BODC and the non-adiabatic corrections. Since tile PES did not include

the BODC in its optimization, we subtract tile H2 160 BODC from the BODC computed

for the isotopomer of interest. In this table, the levels are labeled by normal mode quantum

numbers. Comparing the results from BODC and Noad, we see that in all cases but one, the

Noad results are an improvement over the BODC results, and in some cases significantly so.

Tile exception is the HO stretch in HTO, but both calculations do quite well for this level.

\¥e can see how close we are to our goal of accurate ab initio predictions of isotopic

shifts by comparing the errors to the average errors obtained for H2 160, which was used to

optilnize the PES. The rms errors for the H2 1_O levels in Table III is 0.04 cm -_. There are

five errors larger than this in the table for the other isotopomers. Of the five, three are for

tile anti-symn_etric stretch of D_ 160, T2 160, and HO stretch of tiT 160, and the largest is

-0.10 cm -_. These are probably not significantly larger than we expect. The remaining two

are larger: 0.18 cm -1 for the symmetric stretch of Du 160 and 0.22 cm -1 for the symmetric

stretch of T2 160. Since these errors are larger and are for the same mode, we think that

these are real, significant, discrepancies. \¥e are not sure of the origin of these differences,

but we suspect that it is due to a deficiency in our caleulatio:ts.

It is interesting to also compare our present best results to the previous ones using the

empirical mass correction. In all but four cases, the empirical correction gives smaller errors.

In these four cases, the errors are all small, except for the HO stretch in HT laO, where

I '''_"_ gives -0.14 Clir1-1 and our best ab irzitio results are -0.10 cln -1. In contrast, in the

two cases mentioned above where the ab imtio calculations g_ve large errors, the empirical

mass correction gives significantly smaller errors: 0.00 cm 1 and -0.11 cm -1. However, on

the whole, the two results are very similar, which is a very eEcouraging result.

12



VI. CONCLUSIONS

Wehavecomputedthe isotopic shifts for tile watermoleclile including both the diagonal

and non-adiabaticcorrectionsto the Born-Oppenheimerapproximation. We find that both

correctionsare significant, and on the whole, the isotopicshif'ts arepredicted quite well for

low lying levels. The exceptionsare the symmetric stretching flmdamentalsof D2 160and

T2 160,wherethe errorsareabout 0.2 cm-_.

There are four possiblesourcesof the disagreement:(i) the Born-OppenheimerPES is

not accurateenough, i.e. cancellation of errors allow most. of the isotopomers to be fitted

accurately, but not all, (ii) the BODC is not as accurate as u'e think -- possible sources of

error are the use of the ce-pVTZ basis and icMRCI waveflH:ctions, (iii) the non-adiabatic

correction is not as accurate as we would like, either due to the inability of the scaling to

make up deficencies in the SCF/CIS method, the basis set is too small so that incorrect

geometry dependence is obtained, or the fit is not good encugh, or (iv) the experimental

data is incorrect. \Vork is ongoing to test these possibilities. We are attempting to compute

the best possible ab initio PES[21] as well as generalizing oltr non-adiabatic code to more

accurate wavefllnctions. Nonetheless, the fimlre is very bright for accurate predictions of

isotopic shifts.
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TABLE I: Coordinate transformation nlatrix.

O O O
-- R z

&'l Or'.2 O_ I{y

- sin a;_" 0 - cos ax/rj

0 0 0

cos ax 0 - sin ax/vl

0 sin(1 - a)X cos(1 - a)x/r'2

0 0 0

o cos(1 - a)x - sin(1 - a)x/,'2

0

- sin(1 - a)X/(i'F 1 Sill )()

0

0

- sin ax/(ir 2 sin X)

0

(1. - a) cos ax/ir 1

0

(7: - a) sin ax/irl

,, cos(1 - a)x/ir2

0

-,z sin(1 - a)x/ir 2

0

-cos(1 - a)X/(ir'l sinx)

0

0

cos ox/(ir" 2 sin X)

0
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TABLE II: BODC tbr tt20 from wtrious electronic wavcfun(:ti()ns (in cm -1).

u_ SCF CASSCF icMRCI

0 (0,0)+ o.00 0.00 0.00

1(0,0)+ -0.50 -0.46 -0.45

2(0,0)+ -I.00 -0.94 -0.91

0(1,0)+ -0.05 0.39 0.28

0(1,0)- 0.1:3 0.62 0.47

3(0,0)+ -1.52 -1.46 -1.40

1(1,0)+ -0.49 -0.01 -0.11

1(1,0)- -0.31 0.24 0.09

4(0,0)+ -2.08 -2.03 -1.95

2(1,0)+ -0.94 -0.42 -0.50

2(0,1)- -0.74 -0.16 -0.29

0(2,0)+ -0.05 0.96 0.67

0(2,0)- 0.09 1.19 0.83

0(i,i)+ 0.21 1.22 0.90
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TABLE III: Errors and ext)(Mment_d energies for low-lying vibr_,tional h',vels of various isotopic

substitutions (in cnl 1).

Source H2160 ttD L60 D21sO T2160 HT160

010

V "_"'_ -0.03 -0.04 -0.03 0.00 -0.01

BODC 0.02 0.00 -0.04 -0.04

Noad 0.05 0.01 0.00 -0.02 0.01

exp. 1594.78 _ 1403.48 a 1178.385 995.33 c 1332.'18d
020

V ''_ 0.00 -0.01 0.00

BODC 0.20 0.06

Noad 0.05 0.07 0.00

exp. 3151.63 _ 2782.018 2336-84_
100

V "_'ss 0.01 0.02 0.00 -0.11 -0.04

BODC 0.51 0.62 0.39 0.31

Noad -0.04 0.00 0.18 0.22 0.{)3

exp. 3657.04 a 2723 .68a 2671.65 ¢ 2237.15 i' 2299.77g
001

V ''_a'_s -0.03 -0.01 -0.01 -0.01 -0.14

BODC 0.76 0.58 0.29 -0.07

Noad 0.03 0.02 -0.07 -0.08 -0.10

exp. 3755.96 a 3707.47 a 2787-72e 2366"60h 3716"58Y

Ref. 7

bRef. 22

_Ref. 23

dRef. 24

¢Ref. 25

fRef. 26

gRef. 27

ht{ef. 28
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